Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
نویسندگان
چکیده
Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.
منابع مشابه
Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.
Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydro...
متن کاملEnergy metabolism and phylogenetic diversity of sulphate-reducing bacteria
Sulphate-reducing bacteria (SRB) are those prokaryotic microorganisms, both bacteria and archaea, that can use sulphate as the terminal electron acceptor in their energy metabolism, i.e. that are capable of dissimilatory sulphate reduction. Most of the SRB described to date belong to one of the four following phylogenetic lineages (with some examples of genera): (i) the mesophilic d-proteobacte...
متن کاملHydrogen evolution and consumption in AOT–isooctane reverse micelles by Desulfovibrio gigas hydrogenase
The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT–water–isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by Wo = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for Wo = 18, a micelle size theoretically fitting the heter...
متن کاملDesulfovibrio sp. genes involved in the respiration of sulfate during metabolism of hydrogen and lactate.
To develop a better understanding of respiration by sulfate-reducing bacteria, we examined transcriptional control of respiratory genes during growth with lactate or hydrogen as an electron donor. RNA extracts of Desulfovibrio desulfuricans subsp. aestuarii were analyzed by using random arbitrarily primed PCR. RNA was reverse transcribed under low-stringency conditions with a set of random prim...
متن کاملEnergy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas.
By use of a membrane fraction prepared from Desulfovibrio gigas grown in a lactate-sulfate medium, synthesis of ATP was demonstrated to be coupled to the oxidation of molecular hydrogen and reduction of either nitrite or hydroxylamine. This phosphorylation was uncoupled from electron transport by pentachlorophenol, methyl viologen, and gramicidin, but not by oligomycin. The extrusion of protons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in biophysics and molecular biology
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2005